• Artem Neverovskyi Національний медичний університет ім. О.О.Богомольця
  • Volodymyr Chernyavskyi Bogomolets National Medical University, Kiev, Ukraine.
  • Vadim Shypulin Bogomolets National Medical University, Kiev, Ukraine.
  • Lesya Gvozdecka Bogomolets National Medical University, Kiev, Ukraine.
  • Nataliya Mikhn`ova Bogomolets National Medical University, Kiev, Ukraine.


Introduction: secretion of bacterial bile salt hydrolase (BSH) is one of the main mechanisms by which gut microbiota play role in cholesterol metabolism. There are limiting and controversial data regarding the clear effect of gut BSH activity correction on modification of serum cholesterol and cardiovascular risk (CVR). Aim of investigation was to evaluate the relationship between modification of the gut bacterial BSH relative activity (RA) by probiotic L. plantarum and serum cholesterol with CVR levels. Methods: the study was conducted as open, comparative, randomized, parallel and included 26 almost healthy participants (healthy control group) and 77 patients with dyslipidemia and without anamnesis of major cardiovascular events, that were divided in two groups: main treatment group (n=41) received combination therapy (capsules with Lactobacillus plantarum in the amount of 2*109 CFU one time a day and tablets simvastatin 20 mg one time a day) and control treatment group (n=36) received monotherapy (simvastatin 20 mg one time a day) during 12 weeks. Before and after 12 weeks of treatment the assessment of total RA of gut BSH, lipid profile and CVR level according to 5 risk scores were performed. Results: at baseline the RA of BSH was higher in healthy adults comparing to participants with dyslipidemia (p<0,001); after 12 weeks of treatment there wasn`t difference between healthy control and only main treatment groups (р=0,45). It was found that with increasing of RA of gut bacterial BSH, the risk of failure of treatment efficacy endpoints achievement (³20% reduction of values) decreased regarding: total cholesterol (TC) (p=0,0306), OR=0,00133 (95% CI; 3,28*10-6-0,538); low-density lipoproteins (LDL) (p<0,001), OR=5,65*10-14(95% CI; 6,38*10-20-5*10-8); CVR level according to Framingham score (р=0,0035), OR=4,09*10-5(95% CI; 4,66*10-8-0,0359); CVR level according to 2013 ACC/AHA algorithm (р=0,0135), OR=3,8*10-4(95% CI; 7,34*10-7-0,197); CVR level according to PROCAM score (p=0,00125), OR=8,38*10-6 (95%; CI; 6,93*10-9-0,0101). Conclusions: additional supplementation with BSH-producing bacteria L. plantarum was more effective in increasing of BSH activity compared to simvastatin monotherapy. Increasing of BSH RA by L. plantarum was associated with higher chances to achieve treatment efficacy goals regarding reduction of TC, LDL and CVR levels according to Framingham, 2013 ACC/AHA algorithm and PROCAM scores.


Assmann, G., Cullen, P., & Schulte, H. (2002). Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Münster (PROCAM) study. Circulation, 105(3), 310–315.

Bi, J., Fang, F., Lu, S., Du, G., & Chen J. (2013) New insight into the catalytic properties of bile salt hydrolase. J Mol Catal B‐Enzym 96:46–51.

Charach, G., Argov, O., Geiger, K., Charach, L., Rogowski, O., & Grosskopf, I. (2017). Diminished bile acids excretion is a risk factor for coronary artery disease: 20-year follow up and long-term outcome. Therapeutic advances in gastroenterology, 11, 1756283X17743420.

Chiang J. Y. (2009). Bile acids: regulation of synthesis. Journal of lipid research, 50(10), 1955–1966.

Cholesterol Treatment Trialists’ (CTT) Collaboration, Baigent, C., Blackwell, L., Emberson, J., Holland, L. E., Reith, et al. (2010). Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet (London, England), 376(9753), 1670–1681.

Costabile, A., Buttarazzi, I., Kolida, S., Quercia, S., Baldini, J., Swann, J. R., et al. (2017). An in vivo assessment of the cholesterol-lowering efficacy of Lactobacillus plantarum ECGC 13110402 in normal to mildly hypercholesterolaemic adults. PloS one, 12(12), e0187964.

D'Agostino, R. B., Sr, Vasan, R. S., Pencina, M. J., Wolf, P. A., Cobain, M., Massaro, J. M., et. al. (2008). General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation, 117(6), 743–753.

Ference, B. A., Ginsberg, H. N., Graham, I., Ray, K. K., Packard, C. J., Bruckert, E., et al. (2017). Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. European heart journal, 38(32), 2459–2472.

Geng, W., & Lin, J. (2016). Bacterial bile salt hydrolase: an intestinal microbiome target for enhanced animal health. Animal health research reviews, 17(2), 148–158.

Goff, D. C., Jr, Lloyd-Jones, D. M., Bennett, G., Coady, S., D'Agostino, R. B., Gibbons, R., et al. American College of Cardiology/American Heart Association Task Force on Practice Guidelines (2014). 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation, 129(25 Suppl 2), S49–S73.

Hajifathalian, K., Ueda, P., Lu, Y., Woodward, M., Ahmadvand, A., Aguilar-Salinas, C. A., et al. (2015). A novel risk score to predict cardiovascular disease risk in national populations (Globorisk): a pooled analysis of prospective cohorts and health examination surveys. The lancet. Diabetes & endocrinology, 3(5), 339–355.

Huang, C. H., Ho, C. Y., Chen, C. T., Hsu, H. F., & Lin, Y. H. (2019). Probiotic BSH Activity and Anti-Obesity Potential of Lactobacillus plantarum Strain TCI378 Isolated from Korean Kimchi. Preventive nutrition and food science, 24(4), 434–441.

Huijghebaert, S. M., & Hofmann, A. F. (1986). Influence of the amino acid moiety on deconjugation of bile acid amidates by cholylglycine hydrolase or human fecal cultures. Journal of lipid research, 27(7), 742–752.

Joyce, S. A., MacSharry, J., Casey, P. G., Kinsella, M., Murphy, E. F., Shanahan, F., et al. (2014). Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proceedings of the National Academy of Sciences of the United States of America, 111(20), 7421–7426.

Kim, S. J., Park, S. H., Sin, H. S., Jang, S. H., Lee, S. W., Kim, S. Y., et al. (2017). Hypocholesterolemic Effects of Probiotic Mixture on Diet-Induced Hypercholesterolemic Rats. Nutrients, 9(3), 293.

Kumar, R., Grover, S., & Batish, V. K. (2012). Bile Salt Hydrolase (Bsh) Activity Screening of Lactobacilli: In Vitro Selection of Indigenous Lactobacillus Strains with Potential Bile Salt Hydrolysing and Cholesterol-Lowering Ability. Probiotics and antimicrobial proteins, 4(3), 162–172.

Lau K, Srivatsav V, Rizwan A, Nashed A, Liu R, Shen R, et al. (2017). Bridging the Gap between Gut Microbial Dysbiosis and Cardiovascular Diseases. Nutrients, 9(8), 859.

Luo, J., Yang, H., & Song, B. L. (2020). Mechanisms and regulation of cholesterol homeostasis. Nature reviews. Molecular cell biology, 21(4), 225–245.

Mach, F., Baigent, C., Catapano, A. L., Koskinas, K. C., Casula, M., Badimon, L., et al. ESC Scientific Document Group (2020). 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. European heart journal, 41(1), 111–188.

Mensah, G. A., Roth, G. A., & Fuster, V. (2019). The Global Burden of Cardiovascular Diseases and Risk Factors: 2020 and Beyond. Journal of the American College of Cardiology, 74(20), 2529–2532.

Reis, S. A., Conceição, L. L., Rosa, D. D., Siqueira, N. P., & Peluzio, M. (2017). Mechanisms responsible for the hypocholesterolaemic effect of regular consumption of probiotics. Nutrition research reviews, 30(1), 36–49.

Ren, J., Sun, K., Wu, Z., Yao, J., & Guo, B. (2011). All 4 bile salt hydrolase proteins are responsible for the hydrolysis activity in Lactobacillus plantarum ST-III. Journal of food science, 76(9), M622–M628.

Sharma, S., Kurpad, A. V., & Puri, S. (2016). Potential of probiotics in hypercholesterolemia: A meta-analysis. Indian journal of public health, 60(4), 280–286.

Silverman, M. G., Ference, B. A., Im, K., Wiviott, S. D., Giugliano, R. P., Grundy, S. M., et al. (2016). Association Between Lowering LDL-C and Cardiovascular Risk Reduction Among Different Therapeutic Interventions: A Systematic Review and Meta-analysis. JAMA, 316(12), 1289–1297.

Sridevi, N., Vishwe, P., & Prabhune, A. (2009). Hypocholesteremic effect of bile salt hydrolase from Lactobacillus buchneri ATCC 4005. Food Research International, 42(4), 516-520.

Tsai, C. C., Lin, P. P., Hsieh, Y. M., Zhang, Z. Y., Wu, H. C., & Huang, C. C. (2014). Cholesterol-lowering potentials of lactic acid bacteria based on bile-salt hydrolase activity and effect of potent strains on cholesterol metabolism in vitro and in vivo. The Scientific World Journal, 2014, 690752.

Urdaneta, V., & Casadesús, J. (2017). Interactions between Bacteria and Bile Salts in the Gastrointestinal and Hepatobiliary Tracts. Frontiers in medicine, 4, 163.

Wang, G., Huang, W., Xia, Y., Xiong, Z., & Ai, L., (2019). Cholesterol-lowering potentials of Lactobacillus strain overexpression of bile salt hydrolase on high cholesterol diet-induced hypercholesterolemic mice. Food & function, 10(3), 1684–1695.

Wang, L., Guo, M. J., Gao, Q., Yang, J. F., Yang, L., Pang, X. L., et al. (2018). The effects of probiotics on total cholesterol: A meta-analysis of randomized controlled trials. Medicine, 97(5), e9679.

WHO CVD Risk Chart Working Group (2019). World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. The Lancet. Global health, 7(10), e1332–e1345.

Williams, B., Mancia, G., Spiering, W., Agabiti Rosei, E., Azizi, M., et al. (2018). 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. Journal of hypertension, 36(10), 1953–2041.

Wu, Y., Zhang, Q., Ren, Y., & Ruan, Z. (2017). Effect of probiotic Lactobacillus on lipid profile: A systematic review and meta-analysis of randomized, controlled trials. PloS one, 12(6), e0178868.

Yao, C., Tian, W., Song, J., & Wang, J. (2020). Antihyperlipidaemic effect of microencapsulated Lactobacillus plantarum LIP-1 on hyperlipidaemic rats. Journal of the science of food and agriculture, 100(5), 2007–2017.

Шипулін, В. П., Чернявський, В. В., Неверовський, А. В., & Парунян, Л. М. (2018). Гіполіпідемічна ефективність пробіотика Lactobacillus plantarum у пацієнтів з ішемічною хворобою серця. Український терапевтичний журнал, (3-4), 27-33.
Як цитувати
Neverovskyi, A., Chernyavskyi, V., Shypulin, V., Gvozdecka, L., & Mikhn`ovaN. (2020). MODIFICATION OF GUT BACTERIAL BILE SALT HYDROLASE ACTIVITY AND CARDIOVASCULAR RISK: A RANDOMIZED STUDY. Український науково-медичний молодіжний журнал, 117(3), 36-45.